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The Economics of Wind Power with Energy Storage 

Pablo C. Benítez, Liliana E. Dragulescu and G. Cornelis van Kooten1 

Department of Economics and Institute for Integrated Energy Systems, University of Victoria 

Abstract 

We develop a nonlinear mathematical optimization program for investigating the 

economic and environmental implications of wind penetration in electrical grids and evaluating 

how hydropower storage could be used to offset wind power intermittence. When wind power is 

added to an electrical grid consisting of thermal and hydropower plants, it increases system 

variability and results in a need for additional peak-load, gas-fired generators. Our empirical 

application using load data for Alberta’s electrical grid shows that 32% wind penetration 

(normalized to peak demand) results in a net cost increase of $C5.20/ MWh, while 64% wind 

penetration could result in an increase of $12.50/MWh. Costs of reducing CO2 emissions are 

estimated to be $41-$56 per t CO2 . When pumped hydro storage is introduced in the system or 

the capacity of the water reservoirs is enhanced, the hydropower facility could provide most of 

the peak load requirements obviating the need to build large peak-load gas generators.  
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1 Introduction 

Concern about climate change and rising concentrations of CO2 in the atmosphere has 

increased the search for alternative energy resources with lower CO2 emissions. One approach is 

to switch from fuels with high carbon content per unit of energy, such as coal and oil, to ones 

with lower carbon content such as natural gas, but there are limits to such substitutions because 

there are limits to the availability of cleaner fossil fuels (Banks, 2003). One alternative, therefore, 

is to shift away from fossil fuels to renewable energy resources. Of renewable options, wind 

power is often considered the ‘best’.  

Wind energy has become the world’s fastest growing energy resource, partly because of 

advances in technology and its reputation as a cost-effective renewable energy resource. 

According to the World Wind Energy Association, during the last five years wind energy 

capacity more than tripled, from 13,700 MW in 1999 to 47,600 MW in 2004 (WWEA, 2005). 

The most successful wind energy markets have been in Europe, particularly Denmark, Germany 

and Spain; EU policy is to increase installed renewable energy capacity, meaning primarily wind, 

to 15% of total electrical generating capacity within the next decade (ESB National Grid, 2004). 

In Denmark, the current average penetration rate of wind-produced energy is more than 20%. In 

some areas of western Denmark, wind accounts for as much as 50% of electrical power 

generation, and the Danish government’s target is for wind to account for half of all power 

generated in the country by 2030 (Pitt et al., 2005). Although Europe accounts for 70% of the 

world’s installed wind power generation capacity, there is now an upsurge in wind use in the 

United States and Canada, as well as in many developing countries. With improvements in 

technology and growth in the market for wind power, the cost of electricity generated by modern 
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wind farms has declined by some 80% since 1980 – from about 38 cents per kilowatt hour (KWh) 

to about 4 cents. Engineers claim that costs will continue to decline so that, with increasing oil 

prices, wind power will be competitive with fossil fuel energy (DeCarolis and Keith, 2006).  

Most cost estimates of wind power ignore the externality costs that wind imposes on an 

electrical grid – the costs of maintaining idle capacity and spinning reserves in thermal power 

plants in the event that wind is unavailable for generating electricity. Non-wind power generators 

need to be able to provide electricity the moment the power from wind is unavailable. If backup 

power is provided by a coal-fired generator, for example, it needs to be running continuously 

(perhaps at part capacity), burning fuel but not delivering power to the grid. Fuel efficiency may 

even be reduced, at least in the short run, because thermal generators function below their 

optimal operating range, leading to even higher costs and greater CO2 emissions than otherwise. 

If backup power is provided by a peak-load generator, such as an open-cycle gas turbine or 

diesel plant, more frequent stops and starts brought about by vagaries in wind power add to 

overall operating costs. Peak-load generators also tend to be inefficient (typically below 30%), 

which leads to higher fuel consumption and CO2 emissions compared to base-load generators. 

Finally, wind-generated power may be available when it is not needed, and must be stored, sold 

into another grid (if available), or wasted.  

A number of researchers have proposed energy storage for offsetting wind intermittence 

(Belanger and Gagnon, 2002; Korpaas et al., 2003; Castronuovo and Lopes, 2004). A storage 

system generally imposes an energy penalty during both the input and output conversion 

processes. A typical battery system has a roundtrip efficiency of about 80%, while the efficiency 

of a regenerative fuel cell system is about 35% to 40%. As a substantial fraction of the energy is 

wasted in such storage systems, the capacity of a wind farm needs to be increased to overcome 



 4

these losses (Love et al., 2003). A better storage alternative is hydraulics. Since hydroelectric 

power plants can be used (and are used in some systems) to supply peak-load power, they are an 

ideal means for storing wind-generated energy and providing power when wind is unavailable. 

Using wind forecasts, hydropower plants can adjust their storage and discharges so that they 

provide energy to the system almost instantaneously, operating much like a peak-load plant. 

Where hydropower is available, it constitutes an ideal storage device in some ways as 

power can be made available at any time, including peak times. A traditional hydropower plant 

can be enhanced by pumped hydro storage. In a pumped hydro storage system, a second 

reservoir located below the first is required. When there is surplus energy in the grid (i.e., when 

wind power is available to such an extent that it displaces coal and/or gas-fired capacity already 

on line), water is pumped from the lower reservoir into the upper reservoir where it is stored 

(Schoenung et al., 1996). When electricity is in short supply because there is insufficient wind 

and/or at peak times, water is released to generate power.  

A number of researchers have investigated the impact of wind penetration in electricity 

grids from a purely practical (engineering) standpoint (Belanger and Gagnon, 2002; Love et al., 

2003; Lund, 2005; Weisser and Garcia, 2005), but only a few have done it from an economics 

perspective (Liik et al., 2003; DeCarolis and Keith, 2006). For instance, while Lund (2005) used 

an input-output model for evaluating large-scale wind integration in Denmark, he does not 

provide least-cost alternatives for adapting the generating capacity of thermal power plants to 

wind variability. Our interest in this paper is to assess the overall economic impact of introducing 

wind power into electrical grids and evaluate the trade-offs from increasing levels of wind 

penetration, as well as the costs of reducing CO2 emissions. Thus, we construct a nonlinear 

constrained optimization program of an electrical grid that accounts for fossil-fuel power plants, 
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wind power, hydropower and pumped storage, and searches for the best possible allocation of 

energy across generators and the optimum management of reservoir volumes and water flows 

within the pumped storage system.  

The nonlinear constrained optimization model of an electrical grid is described in the 

next section. The model is used to provide a better understanding of the interrelations among 

major power generating sources and energy storage capacities, evaluate multiple scenarios with 

increasing levels of wind penetration, and determine how different power plants need to adjust 

their operations to offset variability in the availability of wind power. This approach leads to 

estimates of the marginal values (shadow prices) of unexpected changes in wind and the 

marginal costs of reducing CO2 emissions. To illustrate the capabilities of the model we use the 

Alberta electrical grid as a case study, but only in the special case where existing thermal 

generation capacity is displaced by wind to reduce carbon dioxide emissions. We leave to further 

research the situation of adding wind to a system that needs new capacity to meet load growth. 

The Alberta grid and data are discussed in section 3, while model results are provided in section 

4. Our conclusions follow. 

2 Integrating Wind Power and Hydro Storage: A Constrained Optimization Approach 

In this section, a mathematical programming model of an electrical grid is developed to 

assign electrical generation among generators/power plants in a way that minimizes total 

generation costs. The electrical grid operator is assumed to be completely rational in the sense 

that she is perfectly informed about generation costs and capacities, technical constraints, 

available wind-generated power, river flows and future demand for electricity. Mathematically, 

the objective is to assign generation of power across N available power generators (which are 
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coal or gas fired, wind or hydro turbines) over T periods (hours) so as to minimize total 

generation costs: 

( )∑ ∑
= =

⎟
⎠

⎞
⎜
⎝

⎛
×+×+×=

N

i

T

t
itiitiiiROQ

QcEpfCFTC
ttit 1 1

,,,,
  Minimize

,

, (1) 

where TC is total cost ($); Fi is the fixed cost ($) and Ci the nameplate capacity of generator i; pfi 

is the price of fuel ($/GJ) used by generator i and Ei,t is the fuel consumption (GJ) of generator i 

at time t, which depends on the quantity of electricity delivered; ci refers to the non-fuel variable 

(or operating and maintenance, O&M) costs of generator i ($/MWh) and Qt,i is the electricity 

output (MW) delivered by generator (power plant) i at time t; and the time step is hourly. In 

addition to deciding how much output to produce from each electrical generator, the system 

operator also needs to control the outflow of water Ot from behind a hydro dam and the flow of 

water Rt pumped from the lower reservoir back into the upper reservoir for storage.  

The cost function is minimized subject to a number of constraints and auxiliary equations 

that are derived from the need to satisfy demand for electricity in each period and the specific 

characteristics of each power plant. 

· Capacity. The energy produced by each generator/power plant in each period should not exceed 

its nameplate capacity: 

NiTtCQ iit ...,,1       ,...,,1      ,, =∀=∀≤ . (2) 

· Fossil-fuel plants.  

Fuel consumption is related to electricity output as follows: 

Ei,t = 
i

itQ
η×278.0

, , (3) 

where ηi is the fuel efficiency parameter of generator i and the factor 0.278 is used to convert 
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MWh into GJ. Since coal and gas power plants cannot ramp up or ramp down instantaneously, 

the following constraints are required: 

Ramping up: Qt,i – Qt-1,i ≤ MUi ,∀ i = 1, …, Nff (4) 

Ramping down: Qt,i – Qt-1,i ≥ MDi ,∀ i = 1, …, Nff (5) 

MUi is the maximum amount by which generator i’s electrical power output (MW) can be 

increased in a single period, MDi is the maximum amount by which it can be decreased, and 

there are Nff fossil fuel generators.  

· Wind power. We account for wind availability by adding the following inequality constraint: 

TtWQ twindt ...,,1        ,, =∀≤ , (6) 

where Wt is the power aggregated across all existing wind farms. Equation (6) indicates that the 

wind power available to the grid cannot exceed that generated by the various wind farms. As 

discussed below, a wind power series can be developed from available data on wind speconeds, 

although a wind speed time series could be generated by random sampling from a Weibul 

distribution or using more comprehensive time series models (e.g., see Milligan et al., 2003).  

· Hydropower. The power released from a hydropower plant depends on the hydraulic head, the 

water discharge and a set of constants: 

6
, 10−×××××= tthhydrot HOdgη Q , (7) 

where ηh (h refers to a hydropower generator) is the turbine overall efficiency parameter, g is 

acceleration of gravity (m/s2), d is the density of water (kg/m3), Ot is the average water discharge 

that goes through the turbine during period t (m3/s), Ht is the hydraulic head (height in m 

between the water level and turbine), and the factor 10-6 is used for converting Watts (kg m2/s3) 

to MW units. 
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Water is stored in an upper reservoir so that the hydropower operator can regulate the 

discharge at his convenience. In a similar fashion, water is stored in a lower reservoir and the 

hydropower operator can regulate the pumped flow of water to be recycled back into the upper 

reservoir. The difference between the water that enters the upper reservoir and the discharge 

equals the rate of change of the upper reservoir’s volume:  

It + Rt – Ot = U
tV – U

tV 1− , (8) 

where I denotes the inflow, O is outflow, R is the flow of water pumped from the lower (denoted 

L) to upper (U) reservoirs, and U
tV  is the flow of water in the upper reservoir at time t. The 

hydraulic head depends on the storage volume in the upper reservoir as follows: 

Ht = Hmin+ U
tV /A, (9) 

where Hmin is the minimum head at which the hydropower facility could operate and A is the 

surface area of the upper or main reservoir. The hydropower plant is designed for a maximum 

discharge Omax and a maximum pumped flow Rmax, and the upper and lower reservoirs have 

maximum storage volumes of MaxU
tV _  and MaxL

tV _ , respectively.  

0 ≤ Ot ≤ Omax, Tt ...,,1=∀  (10) 

0 ≤ Rt ≤ Rmax, Tt ...,,1=∀  (11) 

0 ≤ U
tV ≤ MaxU

tV _ , Tt ...,,1=∀  (12) 

0 ≤ L
tV ≤ MaxL

tV _ , Tt ...,,1=∀  (13) 

The nameplate capacity for the hydropower plant is determined by the maximum outflow and the 

highest water level: 
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610
max

minmax −×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+×××=

A
VHOdgηC hhydro .      (14) 

Finally, the energy consumption for the pumped storage system is, 

St = 1/ηs × g × d× Rt × Ht × 10–6, (15) 

where ηs is the efficiency of the pumped storage system.1 

· Demand. The system must satisfy demand for electricity in each period (Dt) plus the energy 

required to pump water into storage in each period: 

∑
=

N

i
itQ

1
,  ≥ Dt + St, Tt ...,,1=∀  (16) 

· Greenhouse gas emissions. Finally, the model estimates CO2 emissions for each of the power 

generators factors as follows: 

CO2t = ∑
=

Nff

i
itE

1
, × ξi, ∀  i = 1, …, Nff, (17) 

where Ei,t is fuel consumption measured in GJ, and ξi is the emission factor for generator i, 

measured in t CO2 per GJ. 

3 Empirical Application: Increased Wind Penetration in Alberta 

Interest in wind power as a promising source of electricity has grown significantly over 

the past few years. Canada's Wind Power Production Incentive (WPPI), announced in the 

December 2001 budget, was intended to encourage electric utilities, independent power 

producers and other stakeholders to gain experience with this emerging and promising energy 

                                                 
1 We assume that the water level of the lower reservoir is always at the turbine discharge, and 
thus that its variation in height is negligible.  
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source. Subsequently, wind energy became a mainstay of the federal government’s plan to meet 

its Kyoto obligations (Government of Canada, 2005), with $200 million of direct federal 

subsidies for wind power generation and upwards of $300 million in tax incentives (for all 

renewables) to be made available in the period up to 2010. The objective is to increase installed 

wind generating capacity to 4000 MW by Kyoto’s commitment period, up from only 214 MW of 

installed capacity in 2001. The Alberta Electric System Operator (AESO) has received 

applications from independent power suppliers to connect approximately 600 MW of wind 

generation capacity in addition to 200 MW of capacity in projects already approved. In addition, 

there have been inquires from interested parties regarding the potential installation of 1000 to 

1500 MW of additional capacity (ABB, 2004). These capacity requirements are significant 

compared with a peak hourly demand of 8230 MW in 2003. If such investments come to fruition, 

there could be adverse economic impacts on existing power generators because of the 

intermittency of wind power.  

Alberta currently relies primarily on fossil fuels for electric power, with 48% of installed 

generating capacity based on coal and 41% on natural gas. The remaining 11% consists of 

renewables such as hydropower (7%), wind (2%) and biomass (2%). To evaluate the impact of 

increasing wind penetration in Alberta, we model three scenarios with different rates of wind 

penetration and coal-fired generators progressively replaced by wind farms. We also model two 

wind profiles – one relies on data from a single wind monitoring site, the other on data from two 

sites. The scenarios are summarized in Table 1 and briefly described here. 

1. Base (without-wind) scenario. In the base case, energy is produced by three generators: 

coal (with nameplate capacity of 4700 MW), combined-cycle gas (4000 MW) and 

hydropower (1000 MW). The coal and gas plants are base-load generators. In addition, to 
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satisfying demand in any given hour, it may be necessary to have a new peak-load (diesel 

or open-cycle gas) generator in place, as hydropower may not be able to meet peak 

demand at some times. Whether an additional peak generator is needed is determined 

endogenously in the model. 

2. Moderate (medium) wind penetration scenario. Wind turbines are introduced to replace 

1000 MW of coal-fired capacity. To do so, a great deal more wind capacity is required. 

Due to the intermittency of wind over the year, only 36% of the maximum potential energy 

of a wind turbine is available and thus to replace 1000 MW of coal, about 2800 MW of 

wind capacity is needed, which results in a level of wind penetration of 32% (normalized 

to peak demand). In the case of two wind farms, this will require 1478 wind turbines, 778 

with a nameplate capacity of 1.8 MW each and 700 with a capacity of 2 MW. In addition 

to introducing wind power, we evaluate the need to add a new peak-power plant for those 

times when wind power is unavailable and hydropower from storage cannot cover the load.  

3. High wind penetration scenario. A second wind scenario replaces 2000 MW of coal-fired 

capacity. In this case for the double farm model, 5600 MW of wind are needed (or 1556 

turbines of 1.8 MW capacity and 1400 turbines of 2.0 MW capacity), which results in a 

level of wind penetration of 64%.2 As in the previous scenarios, we let the model decide 

whether a new peak power plant is needed, and its capacity. 

The model is calibrated using data for 2003. Electricity demand for Alberta for 2003 is 

available on an hourly basis from the Alberta Electric System Operator (AESO, 2005). A reserve 

                                                 
2 Based on the Blue Mountain project in Ontario (50 MW installed capacity on 4500 ac), 2.7 
MW of wind capacity can be installed per km2. A 5 GW wind ‘farm’ in Alberta would thus 
require 1850 km2. While this is a large area, it still constitutes less than 1% of the total farmland 
area of the Province. 
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margin of 10% is added to demand to guarantee the reliability of the system. Existing gas plants 

in Alberta are a mixture of cogeneration plants, combined-cycle gas turbines (CCGT) and open-

cycle turbines. For simplicity, we assume that all existing gas plants are base-load CCGT and the 

new peak power generator is an open-cycle gas turbine. 

Coal and gas prices are obtained from data for power plants operating in Canada (Nuclear 

Energy Agency and International Energy Agency, 2005). Natural gas costs are $C6/GJ, while 

coal is $1.9/GJ.3 Both wind and water resources are considered to be available to operators at 

negligible cost.4 Variable O&M costs (excluding fuel) are $3.95/MWh for open-cycle gas, 

$4.36/MWh for CCGT and $0.61/MWh for coal plants (Natural Resources Canada, 2004).  

In the base-case scenario, fixed costs do not influence the optimal solution because 

generators are already in place. For the two wind scenarios, fixed costs for wind and peak (open-

cycle gas) turbine generators are included in the cost function because they are added to the grid 

and the model determines how much additional peak capacity is required. Typical investment 

costs for wind power plants in Alberta are $1620 per kW of installed capacity, while they are 

$800 per kW for open-cycle gas turbines (Natural Resources Canada, 2004). In addition, these 

plants require fixed O&M costs of $39,600 per MW per year for wind and $9,500/MW per year 

for open cycle gas plants. Considering a plant lifetime of 25 years and a discount rate of 5%, the 

annualized cost of installing wind turbines is $155,000 per MW of capacity and $66,000/MW for 

                                                 
3 All monetary values are in Canadian dollars with $C1 ≈ $US 0.89. 
4 While wind might be a ‘free’ resource, water often has an opportunity cost, but only if water 
that generates electricity cannot be used elsewhere. In Alberta, hydro dams are located on the 
east slopes of the Rocky Mountains and are used for flood control and power generation. With 
few exceptions, water is not in short supply and then only in southern Alberta where it is used 
primarily for enhanced oil recovery (although CO2 is increasingly being used) and agriculture. 
The value of water in agriculture is very low, some $0.002 per litre (Parris and Legg, 2006). 
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open-cycle gas plants providing peak power.  

Ramp-up rates depend on each plant’s design and operating conditions. Published data on 

ramp rates for large coal-fired plants suggest that it takes from 2 to 3 hours to ramp up from idle 

to full capacity (ESKOM, 2005). In our model, we assume that it takes three hours both to ramp 

up and ramp down coal-fired output. While combined-cycle gas turbines are usually more 

flexible, they are meant to deliver base load and not peak load power; hence, we assume it takes 

two hours to fully ramp up or ramp down production. We consider no ramp up constraints for 

hydropower or open-cycle gas as both are capable of providing peak load dispatchable power.  

The model also tracks CO2 emissions, so that it is possible to determine savings in 

emissions and costs when wind penetrates the grid. For this purpose, we use the following 

emission factors: 0.094 t CO2 per GJ of coal consumed and 0.056 t CO2 per GJ of gas consumed 

(Reinaud, 2004).  

Wind data are taken from two monitoring stations in British Columbia – one located in 

the Peace Region of northeastern B.C., close to the Alberta border, and the other on the northern 

tip of Vancouver Island that has wind speeds closer to those that might characterize southern 

Alberta (BC Hydro, 2005).5 Thus, we assume that there are two wind farms, one in the north and 

one in the south, so that they are affected by entirely different wind regimes. Each wind farm is 

assumed to supply one half of the total nameplate wind capacity in the system. We also examine 

the case where all of the wind is generated by a wind farm employing the wind profile from 

northeastern B.C. Transmission constraints are ignored.  

                                                 
5 Actual wind speed data for Alberta are not currently available. Wind speed data from the 
Vancouver Island site are for 2002, while that from the northeastern B.C. site are for 2003, 
except for November and December when 2002 data are used. 
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The first wind farm consists of Vestas V80, 1.8 MW turbines with a hub height of 67 m, 

and relies on the wind profile from northeastern B.C. The second ‘farm’ consists of ENERCON 

E-70 turbines with rated capacity of 2.0 MW and hub height of 113 m. At each monitoring site, 

wind speed was measured 30 m above the ground and data are available at 10-minute intervals. 

The following relationship is then used to estimate wind speed at hub height (Patel, 1999): 

W2=W1(h2/h1)0.14, where W2 is the wind speed at hub height h2, W1 is the wind speed at measured 

height h1 (30 m), and 0.14 is a typical ground surface friction coefficient. We estimate wind 

power using the power curves provided by the turbine manufacturers (Vestas, 2005; ENERCON 

GmbH, 2005). Finally, the hourly power output data are obtained by averaging the 10-minute 

wind power values. It turns out that maximum power output from the wind farm based on 

Vancouver Island data is greater than that from the northeastern B.C. location, but that, despite 

this, average power output over the year is somewhat lower; thus, average power for the double 

wind farm model is also somewhat lower than for the single farm. Further, the coefficient of 

correlation between hourly wind speeds for the wind power output profiles is only 0.11, 

indicating that there is much less variability in the two wind farm case.  

Comparing annual available wind power to its capacity in the two farm case, we obtain a 

wind capacity factor of 26%, which is comparable to that obtained at onshore sites found in 

Europe and the United States (Nuclear Energy Agency and International Energy Agency, 2005). 

Figure 1 shows wind power generation over the year when 778 turbines of 1.8 MW each and 700 

turbines of 2 MW each are installed (medium wind scenario). As shown in the figure and despite 

two substantially different wind farm locations, there are 596 hours in the year (6.8% of the time) 

when wind power drops to zero, which implies that another energy source needs to be available 

for those times. If all wind power is generated at a single site, no electricity reaches the grid 
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22.3% of the time (or 1954 hours). 

Most hydropower dams in Alberta are located in the North Saskatchewan River and Bow 

River basins. Instead of modeling several individual hydropower facilities, we consider one large 

hydropower plant of 1000 MW having a single dam that is fed by both rivers. We simulate water 

inflow data so that the average inflow over the year is 400 m3/s, with the reservoir behind the 

dam fed equally by both rivers – each contributing an average flow of 200 m3/s. River flow data 

are measured daily, and were obtained from the HyDat Database of Environment Canada (2005). 

The resulting flow profile for 2003 is shown in Figure 2. As is typical for the region, water flow 

is lowest during winter, peaks during May and declines through the summer, with another peak 

occurring as a result of autumn precipitation.  

We assume that the reservoir for the 1000 MW hydro facility has a volume of 2000 

million m3, which is roughly equivalent to the amount of water consumed during two months. 

None of the hydropower plants in Alberta have a pumped storage system. Other design 

parameters for the 1000 MW hydropower plant are given in Table 2. 

4 Results and Discussion 

In this section, we estimate how much energy is dispatched from the power generators in 

each of the scenarios, the peak capacity requirements, and the net costs of wind penetration. In 

addition, we test the effect of enhancing the hydro generator and adding a pumped storage 

system to Alberta’s electrical grid when there is significant wind generating capacity. The results 

are obtained by coding the mathematical program in GAMS and solving it using the CONOPT 

nonlinear solver (Brooke et al., 2005). 
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4.1 Impacts on coal and gas power plants 

In all of the scenarios with two wind farms, coal provides base-load power, and operates 

at its capacity the entire time. In the one wind farm case under the high penetration scenario, 

however, we find that the coal generator needs to ramp up and down so that it operates at part 

load several times during the year (Figure 3). This increases fuel consumption as fuel efficiency 

falls when the coal-plant operates at part load rather than near full capacity (Kim, 2004). 

The presence of non-dispatchable wind power has the greatest effect on how electricity is 

dispatched from the base-load CCGT power plant. Due to the intermittency of wind power, the 

CCGT generator needs to be adjusted continuously. In the case of a single wind farm, we find 

that the CCGT plant is completely turned off 34 times in the medium and 209 times in the high 

wind scenario (Figure 4). The gas plant operates more frequently when wind generation is spread 

over two regions – it is turned off only four times over the year in the medium wind scenario and 

29 times (for a total of 65 hours) in the high wind scenario. As a result it provides substantially 

more electricity compared to the single wind farm case (27.1 versus 24.8 TWh over the year for 

the medium scenario). The reason that the CCGT power plant operates more frequently in the 

case of two wind farms is that the average wind speed is slightly lower than for the single farm, 

even though variability or intermittency of wind is reduced. Nonetheless, as in the case of coal, 

any increase in the frequency of adjustment to the CCGT plant will increases costs related to 

inefficiencies in fuel use and maintenance costs from unscheduled shutdowns, and might even 

require the re-design of the CCGT. Such costs have not been taken into account in the current 

analysis. 
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4.2 Peak capacity requirements 

In the base scenario, coal provides base-load power, while medium- and peak-load 

demands are satisfied by gas and hydropower, respectively. In the scenarios where wind is 

introduced, these generators may not be sufficient for offsetting the intermittency that wind 

imposes on the electrical grid. Therefore, a new peak power plant needs to be incorporated in the 

system. The capacity of this new power plant depends on the level of wind penetration. In the 

medium-wind scenario with two wind farms (see Table 1), a peak power plant with a capacity of 

379 MW is required, while, in the high-wind scenario, a plant of 1423 MW is required (Figure 5). 

The new peak power plant will operate for a limited amount of time during the year – less than 

1% of the time (only 15 hours) in the medium-wind scenario and nearly 10% (813 hours) in the 

high-wind scenario. In the single wind farm case, the required capacity of a peak gas plant is 

higher (867 MW and 1876 MW in the medium and high wind scenarios, respectively) and the 

peak plant operates somewhat more hours each year. 

4.3 Costs of wind power and CO2 emission reductions 

The costs of wind penetration are divided into (i) the direct costs of new wind generation 

(i.e., fixed costs of new turbines), and (ii) the costs (or savings) imposed on the grid – the change 

in costs relative to the base scenario of deploying electricity from coal, gas and peak generators. 

As indicated in Table 3, investment costs related to wind turbines are still the major cost 

component, but the costs associated with peak power generation are relevant and they rise with 

the degree of wind penetration. In the medium-wind scenario and single wind farm, the costs of 

generating peak power are 15% of the investment in wind turbines, while they are 29% in the 

high-wind scenario. In the case of the double wind farm, they remain below 3%. 
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The main reason for introducing wind power is to reduce CO2 emissions. For evaluating 

the costs of CO2 mitigation, the model keeps track of hourly CO2 emissions of all generators in 

the different scenarios. For the single wind farm, the costs of reducing CO2 emissions are $41 per 

t CO2 for the medium-wind scenario, and $45 per t CO2 for the high-wind scenario; they range 

from $54 to $56 per t CO2 when energy is derived from two wind farms because of the 

somewhat lower total output of power in this case. These values are much higher than the $15/t 

CO2 limit on what large final emitters in Canada will have to pay for exceeding emission targets 

(Government of Canada, 2005) and the C$30/t CO2 that emission permits were trading at on the 

European exchange in early 2006. Note that these estimates do not account for the costs 

associated with the intermittent operation of fossil-fuel generators, nor the increase in CO2 

emissions when power plants operate at part load capacity (which would increase costs in the 

single than the double farm model). Overall, the cost estimates we provide can be considered a 

lower bound estimate of the costs of integrating wind power. 

4.4 Impact of hydropower capacity and energy storage 

It is generally acknowledged that, when wind or other intermittent energy sources are 

present in the grid, water storage in a reservoir is beneficial because it could be used for 

generating electricity when wind is unavailable or demand is high. In our system, the 

hydropower facility provides some storage benefits, but it is not sufficient to obviate the needs of 

additional fossil-fuel capacity (867 MW in the medium-wind scenario and 1876 MW in the high-

wind scenario and single wind farm model). There are three ways for improving storage benefits 

so that the need for additional fossil-fuel capacity in the wind scenarios is mitigated:  

1. Increase hydropower capacity by adding additional turbines. Hydropower can then deal with 
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higher peak loads and greater fluctuations in demand (after wind is taken into account). 

However, there might not be sufficient water behind the dam for accomplishing this goal.  

2. Increase water storage capacity, although this may be physically impossible or economically 

too expensive. 

3. Implement a system of pumped hydro storage.  

The costs of implementing these different alternatives are site specific and, due to lack of 

information, are not taken into direct account in our analysis. Yet, the impacts on the electrical 

grid and on peak-load requirements can be estimated within our model.  

We examine a number of scenarios (in the single wind farm model) that improve upon 

the current configuration of available hydropower and storage capacity, determining in each case 

the required new peak capacity. Results are provided in Table 4. These indicate that (1) by 

increasing the hydropower capacity (i.e., adding more turbines), the size of the peak generator is 

reduced. A reduction in the size of the peak generator results in lower fixed system-wide costs. 

(2) Increasing the storage volume in the upper reservoir decreases the use of the peak generator 

(i.e., less power is dispatched by the peak generator during a year). By reducing the use of the 

peak generator, system variable costs are lowered. (3) Adding a pumped storage system has an 

effect that is similar to that of increasing the size (volume) of the upper reservoir. Whether 

pumped storage (and construction of a down-stream reservoir) or an increase in the capacity of 

the reservoir behind the power dam is preferred will depend on costs, and on physical and 

political constraints. 

5 Discussion 

In this paper, a mathematical optimization model of an electrical grid was developed to 



 20

assess the impacts of introducing intermittent (renewable) energy into the grid. This approach 

has several clear benefits over traditional simulation approaches. First, the model searches for the 

best possible hourly allocation of power output from a variety of generating sources so that total 

operating costs are minimized. This information is crucial for any system operator wishing to 

evaluate the efficiency of the electricity market. Second, the constrained optimization approach 

integrates in one model the intermittency of wind power with the energy storage capabilities of 

reservoirs. While storage is a necessary condition for electrical grids with high rates of wind 

penetration, our model provides guidance for designing cost-effective electricity systems. Third, 

for any level of wind penetration, the model estimates the optimal level of new capacity that will 

guarantee the reliability of a system. This contrasts with traditional simulation models for 

electrical grids where reliability is tested, but not in an optimal framework that guarantees it is 

met. Finally, the model is sufficiently flexible that different types of generators or energy storage 

devices can easily be added.  

Our empirical application shows that an increase in wind penetration creates imbalance in 

the system and must therefore be countered with an increase in backup capacity via a new peak-

load (open-cycle gas or diesel) generator that only operates for short periods during the year. 

This leads to rising system costs that will ultimately need to be passed onto the consumer. The 

costs of this additional peak-load capacity might represent some 15% to 30% of the investment 

costs of a wind farm, and are often ignored in the calculation of the benefits of wind power. 

Further, since the peak-load generator consumes fossil fuels, it also raises the costs of reducing 

greenhouse gas emissions.  

The model was also used to demonstrate that there may be benefits from relying on wind 

power generated at two sites with uncorrelated wind profiles. Since the intermittency of non-
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dispatchable wind power is reduced, there is less ‘wear and tear’ on traditional thermal power 

plants as the frequency of ‘stops and starts’ is reduced. These benefits are offset, however, by the 

fact that average wind power might also be lower. This led to higher CO2 mitigation costs in the 

two wind farm model as opposed to the single model. Future research might profitably examine 

the potential of wind power generated at locations dispersed across a sizable landscape.  

The costs of wind penetration are lower if hydraulic storage is available, with electrical 

grids that are more dependent on hydropower better able to integrate intermittent wind and other 

such power sources. Cost effectiveness of intermittent sources is related to the share of 

hydropower in the grid. For those grids with less ability to store water for power generation, it 

might be necessary to increase the size of existing reservoirs and/or add a pumped storage 

system. However, the overall ability of hydropower to serve this function is subject to the 

vagaries of precipitation and possibly competition for water with agricultural, wildlife, industrial, 

commercial and residential users. In addition, many environmental groups oppose building more 

dams or higher ones, because of their destructive impact on fish and other wildlife habitat. 

Further, because our focus was on CO2 emissions and hydraulic storage, we leave to 

future research an application of the model to dynamic scenarios where the load is increasing 

over time and where new generating capacity could come from either wind or fossil-fired, 

thermal power plants. In that case, the additional system cost associated with wind might be 

lower and perhaps even less than the cost of meeting that same growth with a new fossil-fired 

power plant. However, this needs to be investigated further because of the vagaries of wind and 

the need to install more name-plate wind capacity than thermal capacity. 

Finally, the model developed in this study is a simple representation of the allocation of 

power across generators in an electrical grid. Real-world electrical grids are much more complex, 
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and operate in diverse ways that depend on the use of short versus and long term contracts and 

methods for determining day-ahead unit commitments and real time allocations to generators. 

The current model does not take into account these various nuances, but, rather, assumes rational 

expectations – that hourly electricity demand, water inflows into the reservoir and wind power 

availability are known a priori. Although sophisticated forecasting tools can be used to forecast 

demand with a high degree of confidence, and project future wind availability and precipitation 

relatively accurately, future research needs to examine alternative mathematical programming 

approaches that could better deal with uncertainty issues. 

 

Acknowledgements: The authors want to thank Ned Djilali, Lawrence Pitt, Peter Wild, Andrew 
Rowe, Jessie Maddaloni, Matt Schuett, Justin Blanchfield, David Keith and Alistair Miller for 
data input and useful insights, and two anonymous journal referees for helpful comments and 
suggestions. However, any remaining errors are to be attributed solely to the authors. Financial 
support from BIOCAP Canada, SSHRC strategic grant #410-2006-0266, and the BC Ministry of 
Energy, Mines and Petroleum Resources is gratefully acknowledged. 

6 References 

ABB, 2004. Integration of Wind Energy into the Alberta Electric System – Stage 4: Operations 

Impact. Report Number: 2003-10803-2.R03.4. Electric Systems Consulting ABB Inc, 

Raleigh, NC. 

AESO (Alberta Electric System Operator), 2005. Energy Trading System: Historical Demand 

Data for year 2003. Data available online at: http://ets.aeso.ca/Market/reportsIndex.html 

(accessed September 15, 2005) 

Banks, F., 2003. An Introduction to the Economics of Natural Gas, OPEC Review 27: 25-63. 



 23

BC Hyro, 2005. Wind Monitoring Data. Wartenbe Monitoring Station, Peace Region, British 

Columbia. Available at: http://www.bchydro.com/rx_files/environment/winddata/  

(accessed 21 September, 2005) 

Belanger, C. and L. Gagnon, 2002. Adding wind energy to hydropower. Energy Policy 30: 

1279–1284.  

Brooke, A., D. Kendrick, A. Meeraus and R. Raman. 2005. GAMS. A User’s Guide. Washington, 

DC: GAMS Development Corporation. 

Castronuovo, E. D. and J. A. P. Lopes, 2004. Optimal operation and hydro storage sizing of a 

wind-hydro power plant. Electrical Power and Energy Systems 26: 771-778. 

DeCarolis, J. F. and D.W. Keith, 2006. The economics of large-scale wind power in a carbon 

constrained world. Energy Policy 34: 395-410. 

Environment Canada, 2005. HyDat CD-ROM. Available at: http://www.wsc.ec.gc.ca/products/ 

hydat/main_e.cfm?cname=hydat_e.cfm (accessed 7 September, 2005) 

ENERCON Gmh, 2005. Technical Specifications for E-class Turbines. Available at 

http://www.enercon.de/en/_home.htm (accessed June 29, 2005) 

ESB National Grid, 2004. Impact of Wind Power Generation in Ireland on the Operation of 

Conventional Plants and the Economic Implications. ESB National Grid, Dublin, Ireland. 

ESKOM, 2005. Power Stations and Pumped Storage Schemes. Available at 

http://www.eskom.co.za (accessed 6 May, 2005) 

Government of Canada, 2005. Moving Forward on Climate Change. A Plan for Honoring our 

Kyoto Commitment. Available at: http://www.climatechange.gc.ca/kyoto_commitments/ 

report_e.pdf (accessed 10 June, 2005) 



 24

Kim, T.S., 2004. Comparative analysis on the part load performance of combined cycle plants 

considering design performance and power control strategy. Energy 29: 71–85.  

Korpaas, M., A. T. Holen and R. Hildrum, 2003. Operation and sizing of energy storage for wind 

power plants in a market system. Electrical Power and Energy Systems 25: 599–606. 

Liik, O., R. Oidram and M. Keel, 2003. Estimation of Real Emissions Reduction caused by Wind 

Generators. Paper presented at the International Energy Workshop, 24-26 June, IIASA, 

Laxenburg, Austria.  

Love, M. L. Pitt, T. Niet and G. McLean, 2003. Utility-Scale Energy Systems: Spatial and 

Storage Requirements, Working Paper. Institute for Integrated Energy Systems, 

University of Victoria, BC.  

Lund, H. 2005. Large-scale Integration of Wind Power into Different Energy Systems, Energy 

30: 2402-2412. 

Milligan, M., M. Schwartz and Y. Wan, 2003. Statistical Wind Power Forecasting Models: 

Results for U.S. Wind Farms. National Renewable Energy Laboratory, Golden, CO. 

Natural Resources Canada, 2004. Greenhouse Gas and Cost Impacts of Canadian Electric 

Markets with Regional Hydrogen Production. Available at: 

http://www.nrcan.gc.ca/es/etb/ctfca/PDFs/electrical-markets/en/0-1.htm (accessed 17 

September, 2005). 

Nuclear Energy Agency and International Energy Agency, 2005. Projected Costs of Generating 

Electricity – 2005 Update. OECD, Paris.  

Parris, K. and W. Legg, 2006. Water and Farms: Towards Sustainable Use, OECD Observer 

245(March): 14-16. 

Patel, M.R., 1999. Wind and Solar Power Systems. CRC Press, Boca Raton, FL. 



 25

Pitt, L., G. C. van Kooten, M. Love and N. Djihali, 2005. Utility-Scale Wind Power: Impacts of 

Increased Penetration. Paper No. IGEC-097 in Proceedings of the International Green 

Energy Conference, 12-16 June, Waterloo, ON. 

Reinaud, J., 2004. Emissions Trading and its Possible Impacts on Investment Decisions in the 

Power Sector. International Energy Agency, Paris. 

Schoenung S.M., 1996. Energy Storage for a Competitive Power Market. Annual Review of 

Energy and Environment, 21: 347-370. 

Vestas, 2005. The V80 -1.8 MW Wind Turbines, Power curve for the Class 2A Turbine. 

Available at:  http://www.vestas.com/uk/Products/download/download_UK.htm 

(accessed 23 October, 2005). 

Weisser, D. and R. S. Garcia, 2005. Instantaneous Wind Energy Penetration in Isolated Grids: 

Concepts and Review. Renewable Energy 30: 1299-1308. 

WWEA, 2005. World Wind Energy Capacity at 47,616 MW – 8,321 MW added in 2004, Press 

Release 13.05.2005. World Wind Energy Association, Germany. Available at: 

http://www.wwindea.org/pdf/press/PR_Fig2004_070305.pdf (accessed 15 November, 

2005). 



 26

Table 1: Installed capacity of power generators in the different scenarios (MW)a 
Scenario Coal Gas Hydro Single Windb Double Windc 
Base 4700 4000 1000 0 0 
Medium wind 3700 4000 1000 2770 2800 
High wind 2700 4000 1000 5540 5600 
a Peak demand is 8786 MW. New peak capacity is determined endogenously in the model. 
b Single wind farm using wind profile from northeastern B.C., with 1539 1.8 MW wind turbines 
in medium wind scenario and 3078 turbines in high wind scenario. 
c Two wind farms using wind profiles from northeastern B.C. (with 778 and 1556 wind turbines 
of 1.8 MW capacity in the medium and high wind scenarios, respectively) and northern 
Vancouver Island (with 700 and 1400 wind turbines of 2.0 MW capacity in the medium and high 
wind scenarios, respectively). 
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Table 2: Data Summary 
Parameter  Value / Comments 
Demand data Alberta for year 2003. A reserve margin of 10% was 

added to demand to guarantee system reliability  
Fixed costs for new capacity 
(including fixed O&M)  

Peak (Gas open cycle): $66,000/MW-yr  
Wind: $155,000/MW-yr 

O&M variable costs excluding fuel Coal: $0.61/MWh 
CCGT: $4. 36/MWh 
Peak: $3.95/MWh 
Wind and Hydropower: $0 

Thermal efficiency:  Coal: 37% 
CCGT: 49% 
Peak: 30% 

Fuel price: Coal: $1.9/GJ 
Gas: $6/GJ 

CO2 emission factors: Coal: 0.094 t CO2 per GJ of coal consumed 
Gas: 0.056 t CO2 per GJ of gas consumed 
Hydro and wind power: zero 

Ramp-up constraints. Time required 
for starting up to full capacity 

Coal: 3 hours 
CCGT: 2 hour 
Wind, hydro and peak: less than one hour 

Ramp-down constraints. Time 
required for turning down from full-
capacity to zero 

Coal: 3 hours 
CCGT: 2 hours 
Wind, hydro and peak: less than one hour 

Wind speed data from: Monitoring stations located in the Peace River region 
of British Columbia 

Hydropower plant: Average inflow: 400 m3/s 
Maximum outflow: 1134 m3/s 
Storage volume: 2000 million m3 
Volume of the reservoir at the beginning and end of 
the year: 1000 million m3 
Overall turbine efficiency: 85% 
Maximum head: 106 m 
Minimum head: 92 m 
Pumped storage: not available 

Inflow data for hydro generator: Bow and North Saskatchewan Rivers in Alberta 
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Table 3: Costs of wind penetration (as compared with the no-wind scenario) 
 Single-wind farm scenarioa Two-wind farm scenariob 
Item Medium wind High wind Medium wind High wind
 ($ millions per year) 
Investment in wind turbines 429.4 858.8 434.0 868.0
Costs imposed on the grid (negative indicates savings):   
Coal generation -167.3 -341.0 -167.3 -334.6
Gas generation -1.8 -56.9 113.7 228.0
New Peak generation 64.8 250.6 0.1 20.0
Net costs of wind penetration: 325.1 711.5 380.5 781.4
 $ per MWh 
Costs per MWh 5.2 11.3 6.1 12.5
Reducing CO2 emissions Mt CO2 
CO2 savings 7.985 15.678 7.045 13.910
 $/t CO2 
Cost per t CO2 40.71 45.38 54.01 56.18
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Table 4: New peak capacity requirements under different hydropower and storage 
scenarios  

Scenariosa   

Hydropower capacity 
(MW) 

Storage capacity of 
upper reservoir 

(million m3) 
Pumped 
storage 

Peak capacity 
required 
(MW) 

Electricity produced by 
peak generator 

(GWh) 
Benchmark (Medium Wind)    

1000 2000 No 867 100 
Alternative scenarios     

1000 4000 No 867  66 
1000 2000  Yes 867  66 
1500 2000 No 367  74 
1500 2000  Yes 367  11 
1500 4000 No 367  4 
1500b 4000b  Yesb 367  4 

a In all scenarios, the inflow of water into the upper reservoir is the same, while the capacity of 
the lower reservoir is constant at 1000 million m3 where applicable. 
b In this scenario a pumped storage system was added. The model determined, however, that 
such system would not be used. 
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Figure 1: Estimated power generation from two wind farms with combined capacity of 
2800 MW 
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Figure 2: Water inflow to the hydropower reservoir  
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Figure 3: Electricity dispatched by the coal power plant in the single wind farm model 
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Figure 4: Electricity dispatched by the (combined cycle) gas fired power plant, single wind 

farm model 
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Figure 5: Electricity dispatched by the new peak power generator, single wind farm model  
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